organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sophie H. Dale and Mark R. J. Elsegood*

Chemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England

Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.043 wR factor = 0.122 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Triethyl benzene-1,3,5-tricarboxylate

The title compound, $C_{15}H_{18}O_6$, first synthesized in 1868, has previously been analysed by single-crystal X-ray diffraction, but only the unit-cell dimensions and space group have been published. Here we present the full low-temperature structure determination and show that the title compound crystallizes in the chiral space group $P6_5$ (or $P6_1$), despite its inherent nonchirality. Received 29 April 2003 Accepted 12 May 2003 Online 23 May 2003

Comment

The title compound, (I), was first synthesized in 1868 (Fittig & Furtenbach, 1868) and is the second simplest member of the known family of trimesic acid (benzene-1,3,5-tricarboxylic acid) alkyl triesters, which spans methyl (Karabinos *et al.*, 1946) through to tetracosyl (C_{24}) chains (Breusch & Ulusoy, 1961). None of these alkyl esters has been fully structurally characterized, although the more elaborate 1,3,5-tris[(4-tri-allylsilyl)phenylester]benzene (Cambridge Structural Database, Version 5.24, April 2003 update; Allen, 2002; refcode GUCQOK; Gossage *et al.*, 1999) has been analysed using the single-crystal X-ray technique. The trimethyl ester has been used as a ligand for such metals as Ti, Al and Re, for which the structures of the complexes are known (Sobota *et al.*, 1993; Utko *et al.*, 1993).

The unit-cell dimensions and space group of (I) have been previously determined (Hertel & Dumont, 1935), but here the full low-temperature structure analysis is presented.

The initial solution, provided by *SIR*92 (Altomare *et al.*, 1994), in space group $P3_2$ indicated two molecules in the asymmetric unit (Z' = 2); however, *PLATON* (Spek, 2003) identified additional missed symmetry, yielding the space group $P6_5$ (or $P6_1$; the absolute configuration was not determined) and hence Z' = 1.

The three independent carboxyl groups deviate little from coplanarity with the aromatic ring [dihedral angles with respect to ring C1–C6: C7–O1–O2 3.76 (3)°; C10–O3–O4 4.38 (4)°; C13–O5–O6 0.56 (2)°]; furthermore, the C–O and C=O bond lengths (Table 1) are in the expected ranges.

In the crystal structure, molecules of (I) form sheets in the *ab* plane.

© 2003 International Union of Crystallography

Printed in Great Britain - all rights reserved

Experimental

Catalytic H₂SO₄ was added to a refluxing ethanolic solution (25 ml) of trimesic acid (500 mg, 2.38 mmol). After 60 h, the solution was allowed to cool and the solvent removed *in vacuo*. The residue was dissolved in dichloromethane (10 ml) and washed with saturated aqueous NaHCO₃ (3 × 10 ml). The organic layer was then dried (Na₂SO₄), filtered and evaporated to dryness, yielding (I) (602 mg, 86%) as a white solid. X-ray quality crystals were grown by slow evaporation of a dichloromethane solution of (I). M.p. 405–407 K (literature 407 K; Ghosh *et al.*, 1999); analysis calculated for $C_{15}H_{18}O_6$: C 61.22, H 6.16%; found: C 61.08; H 6.18%. IR, ¹H NMR and ¹³C NMR spectroscopy data agree with those previously reported (Ghosh *et al.*, 1999).

Crystal data

$C_{15}H_{18}O_6$	Mo $K\alpha$ radiation	
$M_r = 294.29$	Cell parameters from 4977	
Hexagonal, P65	reflections	
a = 11.3438 (17) Å	$\theta = 2.3-27.9^{\circ}$	
c = 19.665 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$	
V = 2191.5 (6) Å ³	T = 150 (2) K	
Z = 6	Block, colourless	
$D_x = 1.338 \text{ Mg m}^{-3}$	$0.37 \times 0.25 \times 0.09 \text{ mm}$	
Data collection		

Data collection

Bruker SMART 1000 CCD	3515 independent reflections
diffractometer	2448 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.038$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.8^{\circ}$
(SADABS; Sheldrick, 2001)	$h = -14 \rightarrow 14$
$T_{\min} = 0.910, T_{\max} = 0.991$	$k = -14 \rightarrow 14$
19450 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.122$ S = 1.033515 reflections 194 parameters H-atom parameters constrained
$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0469P)^2 \\ &+ 1.115P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &< 0.001 \\ \Delta\rho_{\text{max}} &= 0.27 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.24 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ \text{Extinction coefficient: } 0.0005 (2) \end{split}$$

Table 1

Selected geometric parameters (Å).

C7-O1	1.211 (3)	C7-O2	1.338 (3)
C10-O3	1.208 (3)	C10-O4	1.339 (3)
C13-O5	1.212 (3)	C13-O6	1.337 (3)

All H atoms were placed in geometrically calculated positions, and were refined using a riding model (aromatic C-H distance = 0.95 Å; methylene and methyl C-H distances = 0.99 and 0.98 Å, respectively). $U_{\rm iso}$ values were set to $1.2U_{\rm eq}$ for aryl H ($1.5U_{\rm eq}$ for methyl H and methylene H). 1543 Friedel pairs were measured but these were not merged prior to refinement.

Figure 1

View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.

Data collection: *SMART* (Siemens, 1994); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXTL* (Bruker, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

We acknowledge the EPSRC for the provision of a studentship (SHD).

References

Adams, R. D., Chen, L. & Wu, W. (1993). Organometallics, **12**, 1623–1628. Allen, F. H. (2002). Acta Cryst. B**58**, 380–388.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Breusch, F. L. & Ulusoy, E. (1961). Instanbul Univ. Fen Fak. Mecmuasi Seri C, 26, 1–5.

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Fittig, R. & Furtenbach, E. v. (1868). Justus Liebigs Ann. Chem. 147, 292–312. Ghosh, C. K., Bhattacharyya, S., Ghosh, C. & Patra, A. (1999). J. Chem. Soc.

Perkin Trans. 1, pp. 3005–3013. Gossage, R. A., Muñoz-Martínez, E., Frey, H., Burgarth, A., Lutz, M., Spek, A. L. & von Koten, G. (1999). *Chem. Eur. J.* **5**, 2191–2197.

Hertel, E. & Dumont, E. (1935). Z. Phys. Chem. B29, 112–116.

Karabinos, J. V., Wright, J. I. & Hipsher, H. F. (1946). J. Am. Chem. Soc. 68, 906.

- Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
- Siemens (1994). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sobota, P., Utko, J. & Lis, T. (1993). J. Organomet. Chem. 447, 213-220.
- Spek, A. L. (2003). PLATON. Utrecht University, The Netherlands.

Utko, J., Wróblewska, M., Lis, T. & Sobota, P. (1993). J. Organomet. Chem. 447, 159–161.